Flow Rate Calculator

Online Mass and Volumetric Flow Rate Calculator suitable for Gases like Air or liquids like Water


Identification Data

Tagname
Site
Area
Notes

Fluid Data

Fluid
State of matter
Density
Kg/m3
Molecular Weight g
Operating Temperature
C
Operating Pressure
bar

Pipe Data

Pipe Diameter
mm
Velocity Pipe
m/s

Common Calculation results for liquids and gases

Pipe Area m2 Velocity in Pipe m/s
Volumetric Flow m3/h Volumetric Flow CFM
Mass Flow Kg/s Mass Flow Kg/h

Calculation results for gases only

Normal Flow Nm3/h Standard Flow SCFM

How the Flow Rate Calculator works?

  • Instrumentation and Control.net
  • Rating: 4.7280 - 353 reviews
All of our calculators work in a similar way. First you will find a block of information called "Identification Data". In this block we ask you to indicate the Tag, the Plant where the instrument is located and the Area. You also have the possibility to add some notes. This information will be attached to the report if you wish to provide it. It is not necessary to perform the calculation.
The next block of information is called "Fluid Data". In this block we ask you to indicate the the name of your fluid, state of matter, and other properties of your fluid. If you select gas, density is calculated based on the Pressure, Molecular Weight and Temperature properties.
The last input block is called "Pipe Data". Here we will need to provide the Pipe Diameter and the Velocity of the fluid.
Once everything is set you must click on Calculate! button. Then, all the resulting cells will be calculated. You can press this button until your results are inline with your expectations. Once everything is correct you can export your work to an ISA S20 format spreadsheet containing all your parameters and results. To be able to obtain this file you must click on Download button.
We hope you enjoy using this calculator.

Information and Definitions

Density Density is the relation of mass and volume.The density of a material varies with temperature and pressure. This variation is typically small for solids and liquids but much greater for gases. Density, for engineers, is defined as the mass of a material per unit volume, commonly expressed as kilograms per cubic meter (kg/m3) or grams per cubic centimeter (g/cm3). It measures how compact or heavy a substance is for a given volume. Mathematically, density (?) is calculated using the formula ? = mass/volume. Engineers use this property to evaluate material behavior under various conditions, influencing design decisions in areas like fluid dynamics, structural engineering, and material selection. It is crucial in applications like buoyancy, stability, and strength where weight and material distribution directly impact performance.
Flow Mass of a substance which passes per unit of time. Mass flow in Kg/s units, flowing through the pipe. Flow, in engineering, refers to the streamlined and efficient movement of resources, energy, or materials through a system or process. It involves optimizing the sequence and management of tasks to reduce waste, minimize delays, and ensure continuous progress. In fluid dynamics, flow describes the behavior of liquids or gases in motion, governed by factors such as pressure, velocity, and viscosity. Engineers study flow to enhance system performance, improve product design, and increase operational efficiency. By understanding flow, engineers can design more effective processes in industries like manufacturing, construction, and transportation, while ensuring safety and sustainability.
Fluid Fluid Name or Composition. Fluid is called a type of continuous medium formed by some substance whose molecules have only a weak force of attraction. A fluid is a set of particles that are held together by weak cohesive forces and the walls of a container; The term encompasses liquids and gases.
Molecular Weight Molecular weight, also called molecular mass, is the total mass of a molecule, calculated as the sum of the atomic masses of all atoms in the molecule. It is expressed in atomic mass units (amu) or grams per mole (g/mol). For engineers, molecular weight is crucial in chemical process calculations, such as determining the stoichiometric proportions in reactions, material properties, and designing chemical processes. It helps estimate the quantity of reactants or products and influences the behavior of materials, such as viscosity, diffusion, and reaction rates in processes involving gases, liquids, or polymers.
Pipe Diameter Inside diameter of the pipe. All process calculations are based on the volume of the pipe which is the function of internal diameter of the pipe. As per standards, any pipe is specified by two non-dimensional numbers Nominal Diameter (in Inches as per American Standards or mm as per European standards) and Schedule (40, 80, 160,...). The outer diameter of the pipe is the diameter of outer surface of the pipe.
Pipe Area The pipe area, often referred to as the cross-sectional area of a pipe, is a critical factor in fluid dynamics and engineering design. It is calculated using the formula A=PI*r2 for circular pipes, where r is the radius. This area determines the flow capacity of the pipe, influencing factors such as flow velocity, pressure drop, and the overall efficiency of fluid transport systems. In engineering applications, understanding the pipe area is essential for sizing pipes correctly to meet specific flow requirements while minimizing energy losses and ensuring optimal performance in systems such as water supply, drainage, and industrial processes.
Plant, Area and Notes Information Referred to the physical installation of the instrument. Plant and Process Area where the instrument is installed. Notes about the instrument.
Pressure Operating Pressure of the flui in Bar units. Pressure has two effects on volume. The higher pressure makes the gas denser so less volume flows through the meter. However, when the volume is expanded to base pressure, the volume is increased. Avogadro was the one who determined that under standard conditions the volume that a mole of any gaseous substance occupies is always the same. This value is 22.4 liters. The volume of a mole of any gas is known as the molar volume. For example: 1 mole of hydrogen, 1 mole of nitrogen or water vapor, chlorine, carbon dioxide, etc. they will always occupy 22.4 liters in standard conditions. If these conditions change (they are no longer 1 atmosphere or 273 K), the volume will also change.
State of Matter In engineering, a state of matter refers to the distinct forms that different phases of matter take on, characterized by varying properties such as density, shape, and volume. The primary states are solid, liquid, and gas, each defined by the arrangement and energy of particles. Solids have fixed shapes and volumes due to tightly packed particles, liquids have fixed volumes but take the shape of their containers due to loosely packed particles, and gases expand to fill their containers as particles move freely and are widely spaced. Additionally, plasma is another state observed at extremely high temperatures where ionized particles prevail.
Tagname Tagname of the instrument. This is the identifier of the field device, which is normally given to the location and function of the instrument.
Temperature Operating Temperature of the fluid in Celsius units. The flowing temperature is normally measured downstream from the orifice and must represent the average temperature of the flowing stream in degrees Celsius. Temperature has two effects on volume. A higher temperature means a less dense gas and higher flows, but when this higher flow is corrected to base temperature, the base flow is less.
Velocity in pipe Velocity in a pipe refers to the speed at which a fluid (liquid or gas) flows through the pipe. It is determined by the flow rate (volume of fluid passing per unit time) and the pipe's cross-sectional area. The relationship is governed by the equation V=Q/A , where V is velocity, Q is flow rate, and A is the pipe's cross-sectional area. Velocity affects factors such as pressure drop, turbulence, and energy losses. High velocity can cause erosion and noise, while low velocity may lead to sedimentation or inefficient flow.
Volumetric Flow Volumetric flow refers to the volume of fluid passing through a given cross-sectional area per unit time. It is commonly measured in cubic meters per second (m3/s) or liters per minute (L/min) and is crucial in fluid dynamics, piping systems, and various engineering applications. The volumetric flow rate (Q) can be calculated using the equation Q = A v, where A is the cross-sectional area of the flow, and v is the velocity of the fluid. This parameter is important in determining the efficiency of fluid transport systems, like pumps and pipelines.
Mass Flow Mass of a substance which passes per unit of time. Mass flow in Kg/s units, flowing through the pipe. Mass flow is usually represented with W letter.
Normal Flow Standard or normal conditions are used as reference values ??in thermodynamics of gases. To specify the gas volume, Normal or Standard temperature and pressure conditions are generally used. The reason is very simple, the volume of a constant number of moles of gas depends on the measurements of temperature and pressure.
Standard Flow Standard flow conditions in fluid mechanics refer to a set of baseline reference conditions used to compare and analyze fluid flow properties across different systems. These conditions ensure uniformity in calculations, simplifying design and analysis. Commonly, standard flow conditions assume a fluid's temperature, pressure, and velocity to be consistent or reference values. For air, typical values include a pressure of 101.325 kPa (1 atmosphere) and a temperature of 288.15 K (15 Celsius degrees). Engineers use these standard conditions to characterize parameters such as Reynolds number, Mach number, and flow velocities, enabling the comparison of different fluid systems. In compressible flows, standard conditions aid in defining flow characteristics like isentropic processes, flow rates, and aerodynamic performance. These reference conditions are essential in engineering applications such as pipe flow design, HVAC systems, and aerodynamic studies, providing a standardized framework for evaluating fluid behaviors and simplifying communication across different industries.

Flow Rate Calculator References

1 International Organization of Standards (ISO 5167-1). 2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 1: General principles and requirements.
2 International Organization of Standards (ISO 5167-2) 2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full -- Part 2: Orifice plates.
3 American Society of Mechanical Engineers (ASME). 2001. Measurement of fluid flow using small bore precision orifice meters. ASME MFC-14M-2001.
4 U.S. Dept. of the Interior, Bureau of Reclamation, 2001 revised, 1997 third edition, Water Measurement Manual.
5 Michael Reader-Harris (2015) Orifice Plates and Venturi Tubes.
6 Miller, R. W., Flow Measurement Handbook, 3rd ed., McGraw-Hill, New York, 1996.
7 American Gas Association, AGA Gas Measurement Manual, American Gas Association, New York.
8 Wikipedia
9 Corrosionpedia
10 Orifice Plates and Venturi Tubes (2015) - Michael Reader-Harris
11 EMERSON Fundamentals of Orifice Meter Measurement
12 Search Data Center

Another calculators or articles that may interest you ...

1 Read an easy explanation about the difference between thedistinct types of pressure in"Whats the difference between Absolute, Gauge and Differential Pressure?".
3 How to convert actual flow to normal flow?, How to convertstandard cubic meter to normal cubic meter?, How actual tonormal flow conversion works? If you want to answer thesequestions don't forget to read Difference between Actual, Standard and Normal Flows
4 Density of Common Liquids, an useful table that represents the density of some commonliquids and their temperature.
5 This table shows us the molecular weigth of common gases andhis formula: Molecular Weight of Common Gases
6 Orifice Plate Calculator-Find Orifice Size is an useful tool to calculate the size of an orifice plate.
7 Flow Rate Calculator you can calculate the volumetric flow rate of any liquid or gas through a specific pipe diameter and download results.

Frequently Asked Questions

Q1 What is a flow rate calculator, and why is it essential for engineers?
A1 A flow rate calculator is a tool engineers use to determine the volume of fluid moving through a pipe, channel, or system over a specific period. It's crucial because accurate flow rate measurements help ensure systems operate efficiently and safely. Engineers use this to design piping networks, control fluid systems, or manage water resources. Incorrect calculations can lead to inefficiencies, energy waste, or potential system failures.
Q2 How do engineers use flow rate calculators in hydraulic systems?
A2 In hydraulic systems, engineers rely on flow rate calculators to assess how much fluid (typically oil or water) moves through the system. This helps determine the system's capacity, performance, and efficiency. Flow rate calculations help in sizing pumps, valves, and pipes. Accurate measurements ensure the system can handle the required load without overpressure, cavitation, or other issues, ultimately leading to optimal system design.
Q3 What is the best way to measure flow rate?
A3 The best way to measure flow rate depends on the type of fluid, the required accuracy, and the specific application. Common methods include using flow meters such as differential pressure flow meters (e.g., orifice plates, Venturi tubes), positive displacement flow meters, or turbine flow meters for precise measurement in liquid and gas systems. For non-intrusive measurement, ultrasonic flow meters or magnetic flow meters are ideal, particularly for conductive fluids. In high-precision applications, Coriolis flow meters provide direct mass flow measurement. The right choice should consider factors like fluid properties, system pressure, and budget constraints.
Q4 How do you measure actual flow rate?
A4 To measure the actual flow rate in a system, you can use several methods depending on the fluid type, system design, and required accuracy. Commonly, flow meters such as turbine meters, magnetic flow meters, or ultrasonic flow meters are used. Turbine meters measure the velocity of the fluid using a spinning rotor, while magnetic flow meters work based on the fluid's electrical conductivity. Ultrasonic flow meters use sound waves to calculate flow rate by measuring the Doppler shift. Additionally, pressure drop across an orifice plate or venturi tube can be used to infer flow rate using Bernoulli's principle. Calibration and conditions like temperature and pressure are critical for accurate results.
Q5 How do you manually measure flow?
A5 To manually measure flow, one can utilize various methods depending on the fluid type and application. A common approach is using a flow meter, such as a rotameter or a paddle wheel meter. For open channels, the flow can be measured by determining the water level using a weir or flume, which relates the height of the water to flow rate through calibration. Alternatively, one can use a bucket method, where fluid is collected over a specific time period, and flow rate is calculated by dividing the volume collected by the time taken. It's essential to consider factors such as pressure, temperature, and fluid properties for accurate measurements.
Q6 How to calculate water flow rate in litres per minute?
A6 To calculate the water flow rate in litres per minute (L/min), you'll need to measure the volume of water flowing through a system in a specific timeframe. First, use a container of known volume, such as a bucket, and collect the water for a precise duration, typically one minute. Measure the volume of water collected in litres. If the collection period is shorter or longer than one minute, simply adjust the calculation.
Q7 How do I find flow rate?
A7 To find the flow rate of a fluid, you can use the formula: Flow Rate (Q) = Area (A) x Velocity (v). First, determine the cross-sectional area of the pipe or channel through which the fluid flows. This can be calculated using the formula for the area of a circle (for circular pipes) or the appropriate formula for other shapes. Next, measure the fluid's velocity, which can be done using a flow meter or by timing how long it takes for a known volume of fluid to pass a point. Multiplying these two values will give you the flow rate, typically expressed in units like liters per second (L/s) or cubic meters per hour (m3/h).
Q8 How do you calculate standard flow rate?
A8 To calculate the standard flow rate, you typically start by determining the volumetric flow rate, which can be measured using a flow meter or calculated using the formula (Q = A x V), where (Q) is the flow rate, (A) is the cross-sectional area of the flow path, and (V) is the average velocity of the fluid. Once you have the volumetric flow rate, it can be adjusted to standard conditions, often defined as a temperature of 20 C and a pressure of 1 atm. This adjustment can involve using ideal gas laws for gases or applying correction factors for liquids to ensure accurate representation of flow under standard conditions.